16,142 research outputs found

    Potential economic gains from using forage legumes in organic livestock systems in northern Europe

    Get PDF
    This report was presented at the UK Organic Research 2002 Conference of the Colloquium of Organic Researchers (COR). Forage legumes, with their ability to fix nitrogen biologically, seem especially attractive for organic livestock production. In an attempt to assess their true potential, this study draws on a four-year trial conducted at 12 sites in northern Europe with four different forage legumes. One third of the sites were managed as organic systems, with the harvested forage being fed as silage to dairy cows. Based on the trial results, an economic assessment has been made of the potential of forage legumes to improve the competitive edge of organic dairy systems, relative to conventional grass-based ones. Although the results suggest that the organic milk price premium plays a major role in determining the comparative profitability of organic dairy systems, the use of forage legumes also gives a significant cost advantage to organic production

    A framework for assessing crop production from rotations

    Get PDF
    This report was presented at the UK Organic Research 2002 Conference of the Colloquium of Organic Researchers (COR). Organic farming systems rely on the management of biological cycles for the provision of nutrients, which are crucial to maximising the production from the system. Rotations based on the use of grass-legume leys are central to the concept of organic farming systems, because they have the potential to support both animal production, and a subsequent, exploitative, arable cropping phase. A major challenge in organic farming is managing the supply of nitrogen, since it has a key role in governing both productivity and environmental impact. Hence, within a rotational system, there is a need to understand the complex interactions that are occurring between crop species and management, livestock production system and the impact of soil and climate on these processes. To understand these interactions, a framework is being developed for rotational farming systems that describes the soil nitrogen, crop growth and livestock production. The framework must address questions that are relevant to researchers and extensions workers. Typical questions relate to the management of nutrients in the short and long-term. Additionally, there are concerns over the impact of weeds, pests and diseases on productivity, as well as the impact of adopting new strategies or crops on the farming system

    Measuring device Patent

    Get PDF
    Expulsion and measuring device for determining quantity of liquid in tank under conditions of weightlessnes

    Data users note: Apollo 17 lunar photography

    Get PDF
    The availability of Apollo 17 pictorial data is announced as an aid to the selection of the photographs for study. Brief descriptions are presented of the Apollo 17 flight, and the photographic equipment used during the flight. The following descriptions are also included: service module photography, command module photography, and lunar surface photography

    Amplification and nonlinear mechanisms in plane Couette flow

    Get PDF
    We study the input-output response of a streamwise constant projection of the Navier-Stokes equations for plane Couette flow, the so-called 2D/3C model. Study of a streamwise constant model is motivated by numerical and experimental observations that suggest the prevalence and importance of streamwise and quasi-streamwise elongated structures. Periodic spanwise/wall-normal (z–y) plane stream functions are used as input to develop a forced 2D/3C streamwise velocity field that is qualitatively similar to a fully turbulent spatial field of direct numerical simulation data. The input-output response associated with the 2D/3C nonlinear coupling is used to estimate the energy optimal spanwise wavelength over a range of Reynolds numbers. The results of the input-output analysis agree with previous studies of the linearized Navier-Stokes equations. The optimal energy corresponds to minimal nonlinear coupling. On the other hand, the nature of the forced 2D/3C streamwise velocity field provides evidence that the nonlinear coupling in the 2D/3C model is responsible for creating the well known characteristic “S” shaped turbulent velocity profile. This indicates that there is an important tradeoff between energy amplification, which is primarily linear, and the seemingly nonlinear momentum transfer mechanism that produces a turbulent-like mean profile

    A Streamwise Constant Model of Turbulence in Plane Couette Flow

    Get PDF
    Streamwise and quasi-streamwise elongated structures have been shown to play a significant role in turbulent shear flows. We model the mean behavior of fully turbulent plane Couette flow using a streamwise constant projection of the Navier Stokes equations. This results in a two-dimensional, three velocity component (2D/3C2D/3C) model. We first use a steady state version of the model to demonstrate that its nonlinear coupling provides the mathematical mechanism that shapes the turbulent velocity profile. Simulations of the 2D/3C2D/3C model under small amplitude Gaussian forcing of the cross-stream components are compared to DNS data. The results indicate that a streamwise constant projection of the Navier Stokes equations captures salient features of fully turbulent plane Couette flow at low Reynolds numbers. A system theoretic approach is used to demonstrate the presence of large input-output amplification through the forced 2D/3C2D/3C model. It is this amplification coupled with the appropriate nonlinearity that enables the 2D/3C2D/3C model to generate turbulent behaviour under the small amplitude forcing employed in this study.Comment: Journal of Fluid Mechanics 2010, in pres

    Giant Quantum Reflection of Neon Atoms from a Ridged Silicon Surface

    Get PDF
    The specular reflectivity of slow, metastable neon atoms from a silicon surface was found to increase markedly when the flat surface was replaced by a grating structure with parallel narrow ridges. For a surface with ridges that have a sufficiently narrow top, the reflectivity was found to increase more than two orders of magnitude at the incident angle of 10 mRad from the surface. The slope of the reflectivity vs the incident angle near zero was found to be nearly an order of magnitude smaller than that of a flat surface. A grating with 6.5% efficiency for the first-order diffraction was fabricated by using the ridged surface structure.Comment: 5 pages, 4 figures. To be published in J. Phys. Soc. Jp

    Trans-sonic cusped shaped, periodic waves and solitary waves of the electrostatic ion-cyclotron type

    No full text
    International audienceBy adopting an essentially fluid dynamic viewpoint we derive the wave structure equation for stationary, fully nonlinear, electrostatic, ion-cyclotron waves. The existence of two fundamental constants of the motion, namely, conservation of momentum flux parallel to the ambient magnetic field, and energy flux parallel to the direction of wave propagation, enables the wave structure equation to be reduced to a first order differential equation, which has solutions that are physically transparent. The analysis shows that sufficiently oblique waves, propagating at sub-ion acoustic speeds, form soliton pulse-like solutions whose amplitudes are greatest for perpendicular propagation. Waves that propagate supersonically have periodic cnoidal waveforms, which are asymmetric about the compressive and rarefactive phases of the wave. It is also shown that there exist critical driver fields for which the end point of the compressive phase goes sonic (in the wave frame), with the consequence that the wave form develops a cusp. It is possible that this trans-sonic, choked flow feature provides a mechanism for the "spiky" waveforms observed in auroral electric field measurements

    Trans-sonic cusped shaped, periodic waves and solitary waves of the electrostatic ion-cyclotron type

    Get PDF
    By adopting an essentially fluid dynamic viewpoint we derive the wave structure equation for stationary, fully nonlinear, electrostatic, ion-cyclotron waves. The existence of two fundamental constants of the motion, namely, conservation of momentum flux parallel to the ambient magnetic field, and energy flux parallel to the direction of wave propagation, enables the wave structure equation to be reduced to a first order differential equation, which has solutions that are physically transparent. The analysis shows that sufficiently oblique waves, propagating at sub-ion acoustic speeds, form soliton pulse-like solutions whose amplitudes are greatest for perpendicular propagation. Waves that propagate supersonically have periodic cnoidal waveforms, which are asymmetric about the compressive and rarefactive phases of the wave. It is also shown that there exist critical driver fields for which the end point of the compressive phase goes sonic (in the wave frame), with the consequence that the wave form develops a cusp. It is possible that this trans-sonic, choked flow feature provides a mechanism for the 'spiky' waveforms observed in auroral electric field measurements
    corecore